FTF433A

1. Package Dimension

(F-11)

NO	Function		
1	Input		
2	Ground		
3	Ground		
4	Output		

Unit:mm

2.Marking

FTF433A

2.1.Colour: Black or Blue

2.2Center Frequency (MHz): 433.3

3.Performance

3.1 Absolute Maximum Ratings

Rating	Value	Units
CW RF Power	+0	dBm
DC Voltage between	±30	VDC
Case Temperature	-35 to +85	$\overset{ ilde{}}{\mathbb{C}}$

3.2 Electrical Characteristics

5.2 Electrical Characteristics									
Characteristic		Sy	Minimum	Typical	Maximum	Units			
Center	Absolute Frequency	f _c	433.225		433.375	MHz			
Frequency(+25	Tolerance from	Δf_{c}		<u>±</u> 75		KHz			
<u>~1</u>	433.3MHz	Δ' _C				1112			
Insertion Loss		IL		3.5	5.0	dB			
3dB Bandwidth		BW_3		600		KHz			
Temperature Stability	Turnover Temperature	T _o	15	25	35	$^{\circ}$			
	Turnover Frequency	f。		fc+2.7		KHz			
	Frequency	FTC		0.032		ppm/℃			
Frequency Aging Absolute Value		fA		≤±10		ppm/yr			
DC Insulation Resistance between Any			1.0			ΜΩ			
Rejection	at f _c -21.4MHz(Image)		40	50					
	at f _c -10.7MHz(LO)		15	30		dB			
	Ultimate			80					

© CAUTION: Electrostatic Sensitive Device. Observe precautions for handling NOTES:

- 1.Frequency aging is the change in $f_{\rm c}$ with time and is specified at +65°C or less. Aging may exceed the specification for prolonged temperatures above +65°C. Typically, aging is greatest the first year after manufacture, decreasing in subsequent years.
- 2.The frequency f_c id the frequency of minimum IL with the resonator in the specified test fixture in a 50 Ω test system with VSWR \leq 1.2 : 1. Typically, $f_{oscillator}$ or $f_{transmitter}$ is less than the resonator f_c .
- 3. Typically, equipment utilizing this device requires emissions testing and government approval, which is the responsibility of the equipment manufacturer.
- 4.Unless noted otherwise , case temperature $T_c \! = \! +25^{\circ}\! \text{C} \pm 2^{\circ}\! \text{C}$.
- 5. The design, manufacturing process, and specifications of this device are subject to change without notice.

- 6.Derived mathematically from one or more of the following directly measured parameters: f_c , IL, 3 dB bandwidth, f_c versus T_c , and C_0 .
- 7. Turnover temperature, T_o , is the temperature of maximum (or turnover) frequency, f_o . The nominal center frequency at any case temperature, TC, may be calculated from : $f = f_o [1-FTC (T_o-T_o)^2]$. Typically, oscillator T_o is 20° less than the specified resonator T_o .
- 8. This equivalent RLC model approximates resonator performance near the resonant frequency and is provided for reference only . The capacitance $C_{\scriptscriptstyle 0}$ is the measured static (nonmotional) capacitance between either pin 1 and ground or pin 4 and ground . The measurement includes case parasitic capacitance

FT

FTF433A

4.Reliability

- 4.1 Mechanical Shock: The components shall remain within the electrical specifications after 1000 shocks, acceleration 392m/s², duration 6 milliseconds.
- 4.2 Vibration Fatigue: The components shall remain within the electrical specifications after loaded vibration at 20 Hz , amplitude 1.5mm , for 2 hours.
- 4.3 Terminal Strength: The components shall remain within the electrical specifications after pulled 2 Kgs weight for 10 seconds towards an axis of each terminal.
- 4.4 High Temperature Storage: The components shall remain within the electrical specifications after being kept at the $85^{\circ}\text{C}\pm2^{\circ}\text{C}$ for 48 hours, then kept at room temperature for 2 hours.
- 4.5 Low Temperature Storage: The components shall remain within the electrical specifications after being kept at the $-25^{\circ}\text{C} \pm 2^{\circ}\text{C}$ for 48 hours ,then kept room temperature for 2 hours.
- 4.6 Temperature Cycle: The components shall remain within the electrical specifications after 5 cycles of high and low temperature testing(one cycle: 80° C for 30 minutes $\rightarrow 25^{\circ}$ C for 5 minutes $\rightarrow -25^{\circ}$ C for 30 minutes) than kept at room temperature for 2 hours.

- 4.7 Solder-heat Resistance: The components shall remain within the electrical specifications after dipped in the solder at 260°C for 10±1 seconds, then kept at room temperature for 2 hours. (Terminal must be dipped leaving 1.5 mm from the case).
- 4.8 Solder ability: Solder ability of terminal shall be kept at more than 80% after dipped in the solder flux at $230^{\circ}\text{C} \pm 5^{\circ}\text{C}$ for 5 ± 1 seconds.

5. Remarks

5.1Static voltage

Static voltage between signal load & ground may cause deterioration & destruction of the component. Please avoid static voltage.

5.2Ultrasonic cleaning

Ultrasonic vibration may cause deterioration & destruction of the component. Please avoid ultrasonic cleaning.

5.3Soldering

Only leads of component may be soldered. Please avoid soldering another part of component.